The Concavity of Rényi Entropy Power

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy Power Inequality for the Rényi Entropy

The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.

متن کامل

On Rényi entropy power inequalities

This paper is a follow-up of a recent work by Bobkov and Chistyakov, obtaining some improved Rényi entropy power inequalities (R-EPIs) for sums of independent random vectors. The first improvement relies on the same bounding techniques used in the former work, while the second significant improvement relies on additional interesting properties from matrix theory. The improvements obtained by th...

متن کامل

The concavity of Rènyi entropy power

We associate to the p-th Rényi entropy a definition of entropy power, which is the natural extension of Shannon’s entropy power and exhibits a nice behaviour along solutions to the p-nonlinear heat equation in Rn. We show that the Rényi entropy power of general probability densities solving such equations is always a concave function of time, whereas it has a linear behaviour in correspondence ...

متن کامل

Rényi entropy power inequality and a reverse

This paper is twofold. In the first part, we derive an improvement of the Rényi Entropy Power Inequality (EPI) recently obtained by Bobkov and Marsiglietti [10]. The proof largely follows Lieb’s [22] approach of employing Young’s inequality. In the second part, we prove a reverse Rényi EPI, that verifies a conjecture proposed in [4, 23] in two cases. Connections with various p-th mean bodies in...

متن کامل

A short proof of the "Concavity of entropy power"

We give a simple proof of the “concavity of entropy power”.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2014

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2014.2309341